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What is a network?

* A network is a way of representing patterns of connectivity (links) between
entities (nodes).
* Networks can be abstract or represent physical/regulatory interactions.
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Why build a network?

* Can capture the collective and nonlinear effects of a system
* Network science literature tends to focus on two areas:

* Network structure

* Network processes (i.e., dynamics)
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Part I: Network Theory



Matrix representation of Networks
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This is a very flexible representation:
* Weights

* Directions

* Multi-edges

* Self-loops
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What happens if
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directed?



Networks (graphs)

* Graph G=(V,E) is a set of vertices V and edges E

* Asubgraph G’ of Gis induced by some V' c Vand E'c E

* Graph properties:
* Connectivity (node degree, paths) IA E
* Cyclic vs. acyclic

e Directed vs. undirected



Sparse vs Dense

* G(V, E) where |V|=n, |E|=m the number of vertices and
edges

* Graph is sparse if m~n
 Graph is dense if m~n?

* Complete graph when m=n(n-1)/2



Connected Components

* G(V,E)
. |V| =69
. |E| =71




Connected Components
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Paths

* A path is a sequence {x;, x,,..., Xx,} such that (x;,x,),
(x5,X3), ..., (X,.1,X,) are edges of the graph.

* A closed path x,=x; on a graph is called a graph

cycle or circuit.
O
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Shortest-Path between nodes




Shortest-Path between nodes



Longest Shortest-Path between nodes
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Network paths and diameter

Shortest path:

Connect two nodes by as few
edges as possible

Network diameter:

The longest shortest path in
the network

1

The network diameter is often
very short: ‘Small world network’
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Small-World network

* Every node can be reached from every other by a small
number of hops or steps

* High clustering coefficient and low mean-shortest path
length

* Random graphs don’t necessarily have high clustering
coefficients

* Social networks, the Internet, and biological networks all
exhibit small-world network characteristics
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Random vs scale-free networks

A Random network

Aa

Ab

B Scale-free network

Bb
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P(k) is probability of each
degree Kk, i.e fraction of
nodes having that degree.

For random networks, P(k)
is Poisson distributed.

For real networks the

distribution is often power-
law-like:

P(k) ~ k™

Such networks are said to
be scale-free
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Betweenness Centrality of a Node

The number of shortest paths in the graph that pass through the node divided by the total

number of shortest paths.

Shortest paths: AB,ABC,ABCD/ABED,ABE,BC,BCD/BED,BE,CD,CE,DE

BO(k)=ZZ%,z¢j#k

BC(B)= (1+(1/2)*1 + (1/2)*1+ 1)/(9 + 2 + %) = 3/10

Nodes with a high betweenness centrality control information flow in a network.



Closeness Centrality

Measures the mean shortest distance from a node to all other nodes
Let d;; = shortest path from i to j. Then the mean shortest path is

1
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And the closeness centrality is...

1 n
C’i = — =

Note: d; = 0 by def. here. Ce=1,C,=5/8




Eigenvector Centrality

Make a node’s centrality proportional to the average of the centralities of i's neighbors:

1 n
Ti = by ; Ajjx;

1
X =—-AX
A

Connections to high-scoring nodes contribute more to the score of the node in
guestion than equal connections to low-scoring nodes.



Network clusters (communities)
 |dentify groups of nodes that are densely connected within the group

* Clique based methods

e Quality function maximization (modularity)
* Hierarchical clustering

 Statistical inference

https://en.wikipedia.org/wiki/Community structure
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https://en.wikipedia.org/wiki/Community_structure

Network Clustering

Most popular approach is modularity maximization:

1 kzkj
Q(A,b) = o > (Az‘j T 2F )5bz-,bj
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b = argmax Q(A,Db)
b

There are drawbacks to this method:

* Resolution limit

* Does not provide statistical significance of a
partition/community

Community detection in networks: A user guide
https://doi.org/10.1016/j.physrep.2016.09.002



https://doi.org/10.1016/j.physrep.2016.09.002

Network Clustering

What the network theory people like: Stochastic block models
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Mys m,s/2m
log
2m " (kr/2m)(ks/2m)

G —graph

g — membership vector of each node
m — num. edges in the network

r,s — groups (communities)

K — stubs in the group

There are drawbacks to this method:
* You need to tell it how many groups there are

Community detection in networks: A user guide
https://doi.org/10.1016/j.physrep.2016.09.002
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Part Il: Networks in Biology



Biological network representations

regulates

Gene A regulates the
expression of Gene B

binds
Gene A’s protein physically
interacts with Gene B’s




Networks: Signal Transduction

NHGRI FACT SHEETS

genome.gov

Signals to
other cells

Metabolism

Surface receptor

Signal relay

Ligand-receptor

complex
4 Type |l receptor activates 5 Collateral signalling
PAR6 and LIMK1 R-SMAD via MAPKs and PI3K

Drosha
3 miRNA biogenesis

2 Chromatin opemng

TRIM33
SMAD4

ﬁ —

Nucleosome 1 Transcriptional regulation via SMAD4-R-SMAD with
partner transcription factors

Massagué, TGF-Beta signaling in context.
PMID: 22992590



Networks: Metab
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NHGRI FACT SHEETS

genome.gov

Signals to
other cells

Metabolism

Networks: Gene Regulatory Processes
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Transcription factor (TF) regulation of gene transcription

oo #” O
Gene 1 Gene 2 Gene 3

A
MRNA —~_—

These TF - gene edges depend on the cell’s environment and state
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What counts as an “edge”?

* In developmental biology, an edge is supported by a focused
experiment demonstrating the relationship between linked nodes

* “Much of the architecture of the sea urchin network...is based directly on cis-
regulatory experimentation, and the same is to a large extent true of all of the
GRNs* included in this Special Feature.”

* Michael Levine and Eric Davidson, PNAS 2005
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*GRN — Gene Regulatory Network (TF -> gene edges)
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Predicting outputs from inputs

Boolean logic tables

1 1 1 1 1 1
1 0 1 1 0 0

0 1 0 0 1 0

0 0 0 0 0 0



Predicting outputs from inputs

Experimental data

Gene expression profiles Perturbation data

spatial temporal /

quantitative
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* “This Boolean model computes
' spatial and temporal gene

1 I Model expression according to the

regulatory logic and gene

expression level [

time

Observed boolean Observed boolean GRN Model
expression profiles  pertubation matrix interactions specified in a GRN
T T ' = model for embryonic
L =t development in the sea urchin.”

output factors
© Mmoo m>
H-

domain 1

Prediction of experimental results

Computed boolean = l

expression profiles Boolean Computational Model

e Biology Computational formalization

A BCDEFG

|

GRN regulatory logic m==p vector equations

time

domai o .
az;n::?czgrt?gemem = Peter et. al. PNAS 2012

process rates =) computational step time

domain 1




Predicting outputs from inputs

Comparison of computed spatial prediction to observed spatial expression

R B

Skeletogenic Micromere V2 Endoderm

™

V1 Endoderm

V2 Mesoderm

. . Computationally predicted spatial expression = observed expression
Computationally predicted spatial lack of expression = observed lack of expression
D Computationally predicted spatial expression # observed expression; manually turned off
. Computationally predicted spatial expression # observed expression

Gene Observed expression only; not computed
Computed expression only; no observations available

- Initial condition

Peter et. al. PNAS 2012




Hierarchy of models

Abstracted Specified
High-level models (L1) Low-level models (L2)
I B

Statistical mining

A
Bayesian networks

A
Boolean models

A
Markov chains

A
Differential equations

A
|
|
|
:
Components Influences and Mechanisms (Including Ideker & Lauffenburger
and connections information flow structure) TRENDS in Biotechnology

TRENDS in Biotechnology 2003



GRNs: The population genomics perspective

* How do we identify processes that matter in human health and
disease based on many observations of all genes” mRNA levels
* Is the expression of a gene different between two conditions?

* Differential expression is only part of the story, some genes don’t
change their mean expression, but their correlation with other genes
changes
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A coexpression-based regulatory network model of TFs

B knockdown B wild-type TF Gene

%0.43 r=0.049 r=0.716 « e
e . .'.-JI‘-:..- e '.
2 g
S 0.23 s SV EE Y
g : _a"\e} "}' '
< J e "e
2 T M‘ <‘.' g O
S 0.03 WV il L S B
2 ‘=, 2{ v in"s _'? "o -

0.34 0.54 0.74 0.34 0.54 0.74

Abundance of A (activator)

Fig 1. Bhuva, D.D., Cursons, J., Smyth, G.K. et al. Differential co-expression-based
detection of conditional relationships in transcriptional data: comparative
analysis and application to breast cancer. Genome Biol 20, 236 (2019).
https://doi.org/10.1186/s13059-019-1851-8



Three levels of network statistics [o’/:\J

* TF node strength/degree (sum of outgoing edge weights)
* Gene node strength/in-degree (sum of incoming edges)
* Modules (hetwork communities)

Community 2
025 22> /325 @%
Community 3

Community 1

TF, node strength = 4.5 Gene, node strength = 5.75




Differences in TF node strength

Compare the sum of outgoing edge weights for each TF in each
condition

Inhibitor network 201

151

Compare TF node TF, node strength = 4.5
strength

[ Transcription factor
@ Gene

10 1

Number of transcription factors

0.75 e ol in

-100 0 100
Difference in TF node strength

Control network

TF, node strength = 2
40



Three levels of network statistics [o’/:\J

* TF node strength/degree (sum of outgoing edge weights)
* Gene node strength/in-degree (sum of incoming edges)
* Modules (hetwork communities)

4 )

Community 2

0.25 2.25 /375

Community 1 Community 3

TF, node strength = 4.5

Gene, node strength = 5.75

\ %




Differences in gene node strength .\I/.

Compare the sum of incoming edge weights for each gene in
each condition

Inhibitor network
0.5 400
1 ) 1

w
2 3004

[

()]

—

o

Compare gene node -
strength Gene, node strength = 2.5 2 2001

1 [ Transcription factor g

@ Gene =
100 1

Control network 01 T

25 0 25 50
Difference in gene node strength
(inhibitor - control)

Gene, node strength = 5.75
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Three levels of network statistics [o’/:\J

* TF node strength/degree (sum of outgoing edge weights)
* Gene node strength/in-degree (sum of incoming edges)

* Modules (network communities) / \

Community 2

0.25 2.25 /375

Community 1 Community 3

TF, node strength = 4.5 Gene, node strength = 5.75 \ /




Differential network clustering

The pattern of connectivity in regulatory networks can reveal the groups of
regulators and regulatory elements that are active in a given condition

Control network Inhibitor network
s T EEEEEE= S e N
/ ( Vi \
! I I I
! . : '
|
! ' :
|
! @ O @ ® .
\ VAN
N e e e e e e e e - ~ en e o o - /
Module 1 Module 2 Module 1 Module 2

Padi, M., Quackenbush, J. Detecting phenotype-driven transitions in regulatory
network structure. npj Syst Biol Appl 4, 16 (2018).
https://doi.org/10.1038/s41540-018-0052-5



Network inference methods

Basic premise: The network structure itself is informative

TF Gene
* Gene expression correlation

47‘ * Requires only a couple dozen expression

profiles

* No directionality, TFs are lowly expressed
* DNase footprinting

* Requires TFs with motifs
* Multi-omic and machine learning methods

* Often uses ChIP-seq from large databases like
ENCODE or TF motifs



GRNs: The population genomics perspective

* Now edges between nodes are the result of statistical inference

* They often come from observational studies
* No causal element to study design (case vs. control)
* Mixed cell types
* Other confounders



Complex Sources of Variation in Tissue Expression Data:
Analysis of the GTEx Lung Transcriptome

Matthew N. McCall,1* Peter B. Illei,2 and Marc K. Halushka2*

To summarize, in a collection of normal lung samples, we found that tissue heterogeneity caused by
harvesting location (medial or lateral lung) and late therapeutic intervention (mechanical ventilation) were
major contributors to expression variation. These unexpected sources of variation were the result of
altered cell ratios in the tissue samples, an underappreciated source of expression variation.



Cell type proportion accounts for a substantial
amount of co-expression in bulk samples

Untangling the effects of cellular composition
on coexpression analysis

Marjan Farahbod'%* and Paul Pavlidis'-

"Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 124, Canada; 2Department of
Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada; *Graduate Program in Bioinformatics,
University of British Columbia, Vancouver, British Columbia V5T 456, Canada

“Our conclusion is that the dominant coexpression signal in brain, blood, and
likely, other complex tissues can be attributed to cellular compositional
effects, rather than intra-cell-type regulatory relationships. These results
have implications for the relevance and interpretation of coexpression

analysis.”



Cell Type expression Profiles
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* You don’t, especially if there’s no strong scientific
hypothesis (e.g., case/control)

* Replication

* TF knockout/knock-down in a ”“relevant”

OW dO yOU phenotype

) * Look for confirmatory evidence in literature
<KNOW yO Uure (“biopoetry”)

. * The interesting TF | found for COPD is
rlg ht? implicated in COPD based on other data

 If you have a strong scientific hypothesis, this is
much easier

* Does TF X differentially regulate its targets

after to cigarette smoke exposure in alveolar
type 2 cells?



Regulatory network response to PknA/PknB inhibition

Experimental set-up:
Inhibit PknA/PknB signal transduction using a synthetic small molecule in a virulent TB lab
strain (H37Rv)

PknA/PknB inhibition

Transcription factors
\ 4
Changes in phosphorylation

v Genes

Transcription factor binding

v

Changes in gene expression
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Gene In-degree

Which pathways are most differentially regulated?

* Ranked genes by in-degree difference, ran Gene Set

Enrichment Analysis

Positively enriched functional categories

SIG.ID SIGNATURE SOURCE SIZE ES FDR
MYCOBACTIN Mycobactin biosynthesis MANUAL_CURATION 12 0.76 0.0019
BIOSYNTHESIS
ESX-1 LOCUS ESX-1 LOCUS MANUAL_CURATION 18 0.58 0.015
G0:0031177 phosphopantetheine GO 15 0.6 0.036

binding

Negatively enriched functional categories

SIG.ID SIGNATURE SOURCE SIZE ES FDR
180 Oxidative phosphorylation KEGG 40 -0.49 0.011
NADH DEHYDROGENASE NADH dehydrogenase MANUAL_CURATION 14 -0.62 0.018
G0:0048038 quinone binding GO 12 -0.61 0.096

52



Connecting mycobactin gene targeting with pathway output

Transcription factors

Lipids

Nl
DU
Nl
hours

Name (nominal m/z)
phosphatidylinositol (835)
PIM2 (1175)

mycolic acid (1252
mycobactin (909)

phosphatidylethanolamine (718)
trehalose monomycolate (1595)
phosphatidylglycerol (747)
phosphatidylethanolamine (720)
mannosylphosphomycoketide (707)
1-tuberculosinyladenosine (540)
diacylglycerol (612)

meniquinone (804)

Ac2PIM2 (1704)

phthiocerol dimycocerosate (1385)
glucose monomycolate (1317)
phosphatidylethanolamine (734)
phosphatidylinositol (851)

Iog2 fold change

-2 -1 0 1 2

Mycobactin levels are up 48 hours after PknA/PknB inhibition s3



