Introduction to Transformers

Chirag Agarwal Assistant Professor School of Data Science University of Virginia

- We have 9 players arranged in three layers
- There is an input layer, a hidden layer, and an output layer.

Step 1:

Step 1:

- players in the Input layer receives the image and write down 1 word on each slot (4 slots each)
- send 1 word to each of the 4 players in the hidden layer

Step 2:

Players in the Hidden layer:

- receive 4 words each
- select 2 words to pass to the output node

Step 3:

The output node:

- receive 8 different words
- Picks 4 words to make a caption for an image with some filler words

You just learned what is Feedforward!!

Feeding Forward!

Step 4: Evaluate

Original Caption

Wrinkles? Not in NYC!

Sprinkles? Got in NYC!

Predicted Caption

But how does the model learn??

 \checkmark

Step 5:

The output node:

- Identifies the senders' words that were used in the original caption, i.e., the "correct" words
- Identifies which links gave "better" information

Step 6:

The hidden layer nodes:

- Circles the senders' words that were in the original caption. (these are "correct")
- Identifies which links gave "better" information

This is essentially Backpropagation!!

Backpropagation

Neural Network learning

- Each neuron finds out which words are right/wrong
- 2. adjusts its <u>weights</u> for how it picks words so the network can do better next time

Back to Transformers

The Early Ages

- Seq2Seq models
- Recurrent Neural Networks
- Long-Short Term Memory
- Gated Recurrent Unit

The Current Age

- Transformers
- Logical, Mathematical and Commonsense Reasoning
- Alignment using RLHF
- Safety testing and jailbreaks
- Ethical and Fair models

Evolution of Attention

Transformers

Decoder

Training Pipeline of Large Language Models

Input Processing

- Input
- Embedding Layer
- Position Embeddings

Let's consider a Dialogue Completer

Input Dialogue

It is our choices, Harry, that show what we truly are,

If you want to know what a man's like, take a good look at

It matters not what someone is born,

Dialogue Completion

<start> far more than our abilities <end>

<start> how he treats his inferiors, not his equals <end>

<start> but what they grow to be <end>

Input

Text It matters not what someone is born,

Input

Text It matters not what someone is born,

Input Embeddings

Input Embeddings

36 https://d2l.ai/chapter_attention-mechanisms-and-transformers/transformer.html

Why do we need Positional Embedding?

Recurrent Neural Network or Long-Short Term Memory

Why do we need Positional Embedding?

Transformers

Why do we need Positional Embedding?

England invented Football, which is now played in 211 countries, including the USA, Canada, and **Brazi**l.

Brazil invented Football, which is now played in 211 countries, including the USA, Canada, and **England**.

What to use as Positional Embedding?

40 https://d2l.ai/chapter_attention-mechanisms-and-transformers/transformer.html

Frequencies for Positional Embedding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

41 Vaswani et al. Attention is all you need. NeurIPS, 2017

Vaswani et al. Attention is all you need. NeurlPS, 2017

- 0.75

- 0.50

- 0.25

- 0.00

-0.25

-0.50

-0.75

-1.00

But before that what is attention and why do we need it?

Spotlight Effect!

Psychology lessons: Selective Attention

The act of focusing on a particular object for a period of time while simultaneously ignoring irrelevant information that is also occurring

Attention

Who is this Harry Potter character?

Now if you two don't mind, I'm going to bed before either of you come up with another clever idea to get us killed - or worse, expelled.

Attention

Who is this Harry Potter character?

Now if you two don't mind, I'm going to bed before either of you come up with another clever idea to get us killed - or worse, expelled.

Who is this Harry Potter character?

Now if you two don't mind, I'm going to bed before either of you come up with another clever idea to get us killed - or worse, expelled.

Self-Attention

The dog began to **bark** loudly when it saw someone approaching the tree with rough **bark**.

Vaswani et al. Attention is all you need. NeurlPS, 2017

What does a linear layer do?

Analogous to Data Retrieval/Search

Similarity between Query and Key?

 $\cos(\theta) = 1$

(theta = 0) \rightarrow A and B point in exactly the same direction

 $\cos(\theta) = -1$ (theta = 180) \rightarrow A and B point in opposite directions (won't actually happen for 0/1 vectors)

 $\cos(\theta) = 0$ (theta = 90) \rightarrow A and B are orthogonal

Analogous to Data Retrieval/Search

4 x 2

Х

Х

=

=

Word Emb.+Position Emb.

Word Emb.+Position Emb.

the matters what one both

Х

Х

Х

Key

=

=

=

Scale using dimension!

Normalize using SoftMax!

Weighted Value

7 x 2

Normalized Attention Filter

Attention
$$(Q, K, V) = \sigma\left(\frac{Q.K^T}{\sqrt{d_k}}\right).V$$

What's to Concatenate??

Concatenate Outputs from all Attention Heads

Another Linear layer?? Why? Why? Why?

Another Linear layer?? Why? Why? Why?

What about the rest of the Transformer?

Residual Connection

Let's go down the memory lane...

Residual neural network

Vanishing Gradient Problem

Residual neural network

- Vanishing Gradient: As we backpropagate the gradients back through the network from the output layer towards the input the repeated multiplication of these small derivative values leads to increasingly smaller gradients
- Degradation problem: As a network deepens, the accuracy can start to decline even when training properly, which is not simply overfitting

LayerNorm is used to stabilize the training process and addresses the internal covariate shift (ICS) problem, where the distribution of activations within a layer changes during training, making it difficult for the network to learn effectively.

/ X 4						
1.56	2.12	0.91	2.87			
0.45	1.23	2.76	0.67			
2.03	0.58	1.41	1.29			
0.92	2.31	0.14	2.55			
1.80	0.61	2.98	1.52			
2.67	0.33	1.99	1.74			
0.48	2.40	1.68	0.29			

7 . 1

		1.		
lt	1.56	2.12	0.91	2.87
matters	0.45	1.23	2.76	0.67
not	2.03	0.58	1.41	1.29
what	0.92	2.31	0.14	2.55
someone	1.80	0.61	2.98	1.52
is	2.67	0.33	1.99	1.74
born	0.48	2.40	1.68	0.29

7 x 4

7 x 4 1.56 2.12 0.91 2.87 lt matters 0.45 1.23 2.76 0.67 2.03 0.58 1.41 1.29 not what 0.92 2.31 0.14 2.55 1.80 0.61 2.98 1.52 someone 2.67 0.33 1.99 1.74 is 0.48 born 2.40 1.68 0.29

Mean	Stdev.		
(µ)	<i>(σ</i>)		
1.865	0.673		
1.028	0.867		
1.578	0.504		
1.730	0.838		
1.978	0.811		
1.930	0.656		
1.198	0.822		

$$x_i' = \frac{x_i - \mu_i}{\sqrt{\sigma_i^2 + \varepsilon_i^2}}$$

81

A bunch of Linear is all we need!

That covers our Encoder part of the Transformer!

Decoder

Timestamp = 1

Timestamp = 1

Timestamp = 1

<start> but

<start> but what they grow to be <end>

Oh wait, we never discussed the masked multi-head attention!!!

The Dialogue Completer Task

Input Dialogue

It is our choices, Harry, that show what we truly are,

If you want to know what a man's like, take a good look at

It matters not what someone is born,

Dialogue Completion

?

?

The Dialogue Completer Task

Input Dialogue

It is our choices, Harry, that show what we truly are,

If you want to know what a man's like, take a good look at

It matters not what someone is born,

Dialogue Completion

<start> far more than our abilities <end>

<start> how he treats his inferiors, not his equals <end>

<start> but what they grow to be <end>

Decoder <start> MASK MASK MASK MASK MASK MASK <>

Training

Decoder Chirag MASK MASK MASK MASK MASK<end>

Training

Decoder Chirag

Chirag MASK MASK MASK MASK MASK<end>

Masked Attention

	LStart.	n ha	Wat	"hey	oron	×0	$\phi_{\rm e}$	Lend7
<start></start>	92	35	54	11	39	91	58	7
but	20	21	67	47	13	61	62	3
what	94	54	76	85	39	49	0	58
they	51	53	72	69	97	46	94	32
grow	8	39	22	85	66	95	7	27
to	1	77	5	73	41	20	50	36
be	21	90	3	7	92	69	56	97
<end></end>	91	68	0	56	77	59	81	28

Masked Attention

+

	LSTAT	T WIT	Mat	*hey	drow	×O	$\rho_{\rm e}$	Lends
<start></start>	92	35	54	11	39	91	58	7
but	20	21	67	47	13	61	62	3
what	94	54	76	85	39	49	0	58
they	51	53	72	69	97	46	94	32
grow	8	39	22	85	66	95	7	27
to	1	77	5	73	41	20	50	36
be	21	90	3	7	92	69	56	97
<end></end>	91	68	0	56	77	59	81	28

Attention Filter

	LSTON	out out	Wat	they	010M	×O	Ve	Lend
<start></start>	0	-inf	-inf	-inf	-inf	-inf	-inf	-inf
but	0	0	-inf	-inf	-inf	-inf	-inf	-inf
what	0	0	0	-inf	-inf	-inf	-inf	-inf
they	0	0	0	0	-inf	-inf	-inf	-inf
grow	0	0	0	0	0	-inf	-inf	-inf
to	0	0	0	0	0	0	-inf	-inf
be	0	0	0	0	0	0	0	-inf
<end></end>	0	0	0	0	0	0	0	0

Mask Filter

Masked Attention

Masked Attention Filter

Thank you!